ICX7xxx Advanced
This page assumes you've already followed the update/config guide for your specific switch model. You should now have an updated switch configured with an IP address, and one of the regular switch ports (not the dedicated management port) plugged into your network to access said IP. It's also assumed you're at the configure terminal
CLI level.
Nothing here is necessary for your switch to continue operating as a "dumb" unmanaged switch, but the steps here are highly recommended nonetheless to set up basic security, management, and advanced features you might find useful.
Note: This page is for the ICX7xxx series, anything running FastIron v8080 and above
Key Generation, Security, & Web UI
Before we can do things like SSH to the switch or access the web UI, we need to do a couple things. First, tell it to generate an RSA keypair - this is the first step to enabling SSH access:
crypto key zeroize
crypto key generate rsa modulus 2048
super
user that you set a password for previously. We need to configure the switch to use this account to authenticate logins and web UI access:
aaa authentication login default local
aaa authentication web default local
no telnet server
#optional: password protect the serial port:
enable aaa console
no web-management http
https
instead, run the following (skip this if you just want the webserver off totally):
crypto-ssl certificate generate
web-management https
ssl-certificate creation is successful
message in the console, you'll be able to access the web UI via https
.
Using custom HTTPS certificates
If you'd like the switch web UI to use your own custom HTTPS certificates, that's possible as well. It's important to remember that the switch doesn't support PKCS #8 and this isn't actually documented anywhere. You must create certificates using the PKCS #1 format. If you try to use PKCS #8 (the default for openssl), you'll get certificate parsing errors.
This example assumes you want to create your own CA and sign with it.
Create a new Root CA:
pass='{{ pass }}' \
name='{{ name }}' \
openssl req \
-newkey rsa:4096 \
-sha512 \
-passin pass:"${pass}" \
-x509 \
-nodes \
-keyout "$name"Root.pem \
-new \
-out "$name"Root.crt \
-subj "/CN="$name" Root CA" \
-days 3650
Generate a key in PKCS #1 format using the -traditional
flag (see openssl-genrsa for more details):
openssl genrsa -traditional -out keyfile 4096
Create the certificate signing request:
name='{{ name }}' \
C='{{ country }}' \
ST='{{ state/province }}' \
openssl req \
-new \
-sha512 \
-key keyfile \
-subj "/C="$C"/ST="$ST"/O="$name" Network, Inc./CN=sw1.home.arpa" \
-out certsignreq.csr \
-reqexts SAN \
-extensions SAN \
-config <(cat /etc/ssl/openssl.cnf ; printf "[SAN]\nsubjectAltName=DNS:%s" "sw1.home.arpa")
Sign the certificate request:
name='{{ name }}' \
openssl x509 \
-req \
-in certsignreq.csr \
-CA "$name"Root.crt \
-CAkey "$name"Root.pem \
-CAcreateserial \
-out certfile \
-days 3650 \
-sha512 \
-extensions v3_ext \
-extensions SAN \
-extfile <(cat /etc/ssl/openssl.cnf ; printf "[SAN]\nsubjectAltName=DNS:%s" "sw1.home.arpa")
Install your custom certificate on the switch via TFTP:
ip ssl cert-key-size 4096
ip ssl certificate-data-file tftp 192.168.1.51 certfile
ip ssl private-key-file tftp 192.168.1.51 keyfile
web-management https
Optional: Changing the default user account
If you don't like the default super
username that comes with the switch, you can remove it and create your own user account instead. Just replace customname
and yourpasshere
with your own values:
username customname password yourpasshere
no username super
root
instead:
username root password secret123
no username super
Optional: Key Based SSH Access
If you have followed the above to set up authentication, and also wish to disable password-based SSH login and set up a key pair instead, follow this section. If not, skip it. Enable key login, and disable password login:
ip ssh key-authentication yes
ip ssh password-authentication no
ip ssh interactive-authentication no
ssh-keygen -t rsa
on linux. The default settings of RSA @ 2048 bits works without issue. Generate the pair and save out both the public and private key.
Copy the public key file to your TFTP server. Then use the following command to import it into your switch:
ip ssh pub-key-file tftp 192.168.1.8 public.key
Name & Ditching The Serial Cable
Now that you have access and authentication configured, it only makes sense to christen it with a name of your choice:
hostname beefchunk
Network Configuration
Disable SmartZone
By default, v8090 and above has SmartZone turned on by default, which phones home to Ruckus among other things for the centralized management features. It's typically a good idea to turn this off completely, unless you have a SmartZone setup you'll be using with the switch:
no sz registrar
sz disable
Default Route & DNS
If you want your switch to be able to contact NTP servers for time synchronization, remote SNMP servers, etc, we need to give the switch a default route and a DNS server. Replace the IP with the IP of your gateway/router/etc. Assuming you are still at the configure terminal
level:
ip dns server-address 192.168.1.1
ip route 0.0.0.0/0 192.168.1.1
NTP
To have the switch keep its time synced via NTP (so its logs make more sense), use the following. If you live in an area that doesn't use Daylight Savings, skip the clock summer-time
command. Use tab completion for the timezone command to see what's available. The IPs in the following example are Google's NTP servers and work well for most cases:
clock summer-time
clock timezone gmt GMT-05
ntp
disable serve
server 216.239.35.0
server 216.239.35.4
exit
show ntp associations
show ntp status
SNMP
To quickly enable SNMPv2 (read only), follow the below. SNMP v3 is available but you'll have to refer to the included documentation:
snmp-server community public ro
Writing The Config & Tips
Whenever you make changes (like above) they take effect immediately, however they are not saved to onboard flash. So if you reboot the switch, they will be lost. To permanently save them to onboard flash, use the following command:
write memory
To exit the CLI level you are at, use exit
. So assuming you are still at the configure terminal
level, type the following to exit back to the enable
level:
exit
configure terminal
, the following will also work:
conf t
ip
) then hit tab a couple times.
If you ever need to remove a configuration option you've added, put a no
in front of them at the appropriate CLI level. For example, if you've set the switch name to beefbox
and have since changed your mind:
no hostname beefbox
Advanced Features
This section will outline some of the more advanced configurations you may want to explore. If you use any of them, don't forget to write mem
when done to actually save your changes.
PoE
If you have a PoE enabled model, note that v8080 and above has PoE enabled on all ports by default. This will not harm any non-PoE equipment as no power is delivered until PoE negotiation is performed. If you plug in a PoE device, it should just work. You can monitor PoE status such as power level, which ports are enabled, and how much power they're using by running the following:
show inline power
#or show even more details:
show inline power detail
#or show details for just one port:
show inline power 1/1/5
interface ethernet 1/1/5
no inline power
exit
interface ethernet 1/1/5
inline power
exit
Link Aggregation (802.3ad LACP)
If you'd like to configure an LACP bond on the switch to aggregate 2 or more ports to a server for example, it's been simplified in v8080 and above. First you need to meet some basic criteria before creating the bond:
- all switch ports in the bond must be the same port type / speed
- all switch ports being added to the bond cannot have an existing configuration on them (no IPs set etc)
- all switch ports must have the same VLAN membership
Now create the dynamic (802.3ad) lag, giving it a name of your choice:
lag FreeNAS dynamic id auto
ports
command after the first two:
ports ethernet 1/2/1 ethernet 1/2/2
exit
show lag
Ope
meaning operational. If you have something else here like inactive, you have a configuration issue somewhere:
Port Link State Dupl Speed Trunk Tag Pvid Pri MAC Name
1/3/7 Up Forward Full 10G 2 Yes N/A 0 cc4e.24b8.d9d0 XEN-01-1
2/3/7 Up Forward Full 10G 2 Yes N/A 0 cc4e.24b8.d9d0 XEN-01-2
Port [Sys P] [Port P] [ Key ] [Act][Tio][Agg][Syn][Col][Dis][Def][Exp][Ope]
1/3/7 1 1 20002 Yes L Agg Syn Col Dis No No Ope
2/3/7 1 1 20002 Yes L Agg Syn Col Dis No No Ope
lag
command again with the correct name:
lag freeNAS
ports
command, appending the new ports (don't forget to keep the existing ports in the command, or they will be removed). So, to add two more ports to our example bond:
ports ethernet 1/3/1 ethernet 1/3/2 ethernet 1/3/3 ethernet 1/3/4
exit
write mem
tag type
not matching.
To manage the lag, such as add it to VLANs, apply an ACL to it, or any other port configuration options, you use the virtual lag interface. You need to know the ID of the lag you want to alter, an easy way to find it is to run: (mind the capital D)
show lag | inc Deployed
SSH@CHUNK#show lag | inc Deployed
=== LAG "6650-RACK6" ID 23 (dynamic Deployed) ===
=== LAG "COMPUTE-01" ID 5 (dynamic Deployed) ===
=== LAG "COMPUTE-02" ID 6 (dynamic Deployed) ===
vlan 10
tagged lag 23
interface lag 23
disable
exit
VLANs
Coming Soon
LLDP
Coming Soon
Stacking
Coming Soon
ACLs
Coming Soon
Inter-VLAN Routing
Coming Soon
Config Management
Coming Soon
Useful Commands
Show chassis information like fan and temperature status:
show chassis
show log
clear log
interface ethernet 1/1/1
port-name freenas
show interfaces brief ethernet 1/1/1
exit
Show a table of all interfaces:
show interface brief
show interfaces ethernet 1/1/1
#Also works for virtual interfaces:
show interfaces ve 1
show statistics ethernet 1/1/1
clear statistics
show run
SFP/Optics Information
Brocade does not restrict the use of optics or DACs by manufacturer, they'll take anything given it's the right protocol. However by default, optical monitoring information is disabled unless it sees Brocade or Foundry optics.
So if you want to see information like this:
telnet@Route2(config)#show optic 1/3/1
Port Temperature Tx Power Rx Power Tx Bias Current
+----+-----------+--------------+--------------+---------------+
5 32.7460 C -002.6688 dBm -002.8091 dBm 5.472 mA
Normal Normal Normal Normal
optical-monitor
at the configure terminal
level.
Third Party Optics Unlock
In v8080 FastIron and above, Ruckus added a command that enables optical monitoring details (like the above example) for non-brocade branded optics, so you should no longer need to hunt down Brocade branded optics for detailed SFP+ reporting. It's not guaranteed to work with all optics, but should with most that conform to SFF-8472. Run the following:
optical-monitor
optical-monitor non-ruckus-optic-enable
write mem